THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH3280 Introductory Probability 2023-2024 Term 1
 Suggested Solutions of Homework Assignment 3

Q1

(a). The image of X is $\{4,2,1,0,-1,-2\}$.

$$
\begin{aligned}
& P(X=4)=\frac{\binom{4}{2}}{\binom{14}{2}}=\frac{6}{91} \\
& P(X=2)=\frac{\binom{4}{1}\binom{2}{1}}{\binom{14}{2}}=\frac{8}{91} \\
& P(X=1)=\frac{\binom{4}{1}\binom{8}{1}}{\binom{14}{2}}=\frac{32}{91} \\
& P(X=0)=\frac{\binom{2}{2}}{\binom{14}{2}}=\frac{1}{91} \\
& P(X=-1)=\frac{\binom{8}{1}\binom{2}{1}}{\binom{14}{2}}=\frac{16}{91} \\
& P(X=-2)=\frac{\binom{8}{2}}{\binom{14}{2}}=\frac{4}{13}
\end{aligned}
$$

(b).
$E(X)=\sum_{x: p(x)>0} x \cdot p(x)=4 \cdot \frac{6}{91}+2 \cdot \frac{8}{91}+1 \cdot \frac{32}{91}+0 \cdot \frac{1}{91}-1 \cdot \frac{16}{91}-2 \cdot \frac{4}{13}=0$
The expected value of the money we are going to get for playing 100 games is $(0-2) \times 100=-200$ dollars.
(c). It it not fair. The game is biased against us.

Q2

The possible values of X are $1,2,3,4,5,6$ and the probabilities that X takes on each of these values are

$$
\begin{aligned}
& P(X=1)=\frac{5 \cdot 9!}{10!}=\frac{1}{2} \\
& P(X=2)=\frac{5 \cdot 5 \cdot 8!}{10!}=\frac{5}{18} \\
& P(X=3)=\frac{5 \cdot 4 \cdot 5 \cdot 7!}{10!}=\frac{5}{36} \\
& P(X=4)=\frac{5 \cdot 4 \cdot 3 \cdot 5 \cdot 6!}{10!}=\frac{5}{84} \\
& P(X=5)=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 5 \cdot 5!}{10!}=\frac{5}{252} \\
& P(X=6)=\frac{5!5!}{10!}=\frac{1}{252} \\
& P(X=7)=P(X=8)=P(X=9)=P(X=10)=0
\end{aligned}
$$

Q3

First, find the mass probability functions of X and Y. Let $\Omega=\{40,33,25,50\}$.

$$
\begin{aligned}
& P(X=40)=\frac{40}{148} \\
& P(X=33)=\frac{33}{148} \\
& P(X=25)=\frac{25}{148} \\
& P(X=50)=\frac{50}{148} \\
& P(Y=i)=\frac{1}{4}, i \in \Omega
\end{aligned}
$$

Then we are going to calculate the expectation and variance of X and Y.

$$
\begin{aligned}
& E(X)=\sum_{k \in \Omega} k P(X=k)=40 \cdot \frac{40}{148}+33 \cdot \frac{33}{148}+25 \cdot \frac{25}{148}+50 \cdot \frac{50}{148} \approx 39.28 \\
& E(Y)=\sum_{k \in \Omega} k P(Y=k)=40 \cdot \frac{1}{4}+33 \cdot \frac{1}{4}+25 \cdot \frac{1}{4}+50 \cdot \frac{1}{4}=37 \\
& E\left(X^{2}\right)=\sum_{k \in \Omega} k^{2} P(X=k)=40^{2} \cdot \frac{40}{148}+33^{2} \cdot \frac{33}{148}+25^{2} \cdot \frac{25}{148}+50^{2} \cdot \frac{50}{148} \\
& \operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2} \approx 82.20 \\
& E\left(Y^{2}\right)=\sum_{k \in \Omega} k^{2} P(Y=k)=40^{2} \cdot \frac{1}{4}+33^{2} \cdot \frac{1}{4}+25^{2} \cdot \frac{1}{4}+50^{2} \cdot \frac{1}{4} \\
& \operatorname{Var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=84.5
\end{aligned}
$$

Q4

(a). By simple observation, we can see the event $\{X=1\}$ is equal to $\{(H, T),(T, H)\}$.
$P(X=1)=P\{(H, T),(T, H)\}=0.6 \times(1-0.7)+(1-0.6) \times 0.7=0.46$
(b). Similarly, $\{X=2\}=\{(H, H)\}$. Then

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{2} k P(X=k) \\
& =0 \cdot P(X=0)+1 \cdot P(X=1)+2 \cdot P(X=2) \\
& =1 \cdot 0.46+2 \cdot(0.6 \times 0.7) \\
& =1.3
\end{aligned}
$$

Q5

(a). Denote the event "first coin is flipped" by C_{1}, with C_{2} defined similarly. Let X be the number of heads out of 10 tosses.

$$
\begin{aligned}
P(X=7) & =P\left(X=7 \mid C_{1}\right) P\left(C_{1}\right)+P\left(X=7 \mid C_{2}\right) P\left(C_{2}\right) \\
& =\left[\binom{10}{7} \cdot 4^{7} \cdot 6^{3}\right] \frac{1}{2}+\left[\binom{10}{7} \cdot 7^{7} \cdot 3^{3}\right] \frac{1}{2} \\
& =[.0425] .5+[.2668] .5 \\
& =.1547
\end{aligned}
$$

(b). By conditioning on the outcome of the first flip, we update the probability (now evenly split between coins 1 and 2) that coin 1 is being flipped. Let H_{1} denote the event "the first flip is heads".

$$
\begin{aligned}
P\left(C_{1} \mid H_{1}\right) & =\frac{P\left(H_{1} \mid C_{1}\right) P\left(C_{1}\right)}{P\left(H_{1} \mid C_{1}\right) P\left(C_{1}\right)+P\left(H_{1} \mid C_{2}\right) P\left(C_{2}\right)} \\
& =\frac{.4 \times .5}{.4 \times .5+.7 \times .5} \\
& =\frac{4}{11}
\end{aligned}
$$

Our updated probabilities are now: $P\left(C_{1} \mid H_{1}\right)=\frac{4}{11}$ and $P\left(C_{2} \mid H_{1}\right)=\frac{7}{11}$. Then

$$
\begin{aligned}
& P\left(X=7 \mid H_{1}\right) \\
& =\frac{P\left(\{X=7\} \cap H_{1}\right)}{P\left(H_{1}\right)} \\
& =\frac{P\left(\{X=7\} \cap C_{1} \cap H_{1}\right)+P\left(\{X=7\} \cap C_{2} \cap H_{1}\right)}{P\left(H_{1}\right)} \\
& =\frac{P\left(\{X=7\} \cap C_{1} \cap H_{1}\right)}{P\left(C_{1} \cap H_{1}\right)} \cdot \frac{P\left(C_{1} \cap H_{1}\right)}{P\left(H_{1}\right)}+\frac{P\left(\{X=7\} \cap C_{2} \cap H_{1}\right)}{P\left(C_{2} \cap H_{1}\right)} \cdot \frac{P\left(C_{2} \cap H_{1}\right)}{P\left(H_{1}\right)} \\
& =P\left(X=7 \mid C_{1} \cap H_{1}\right) \cdot P\left(C_{1} \mid H_{1}\right)+P\left(X=7 \mid C_{2} \cap H_{1}\right) \cdot P\left(C_{2} \mid H_{1}\right) \\
& =\left[\binom{9}{6} \cdot 4^{6} \cdot 6^{3}\right] \frac{4}{11}+\left[\binom{9}{6} .7^{6} \cdot 3^{3}\right] \frac{7}{11} \\
& =[.0743] .3636+[.2668] .6364 \\
& =.1968
\end{aligned}
$$

Q6

The number of potential interviewees who consent to the interview X is a binomial random variable, with $n=5$ and $p=\frac{2}{3}$. Q : What is the probability that each of the 5 people consents to the interview?
(a). $P(X=5)=\binom{5}{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{0}=\left(\frac{2}{3}\right)^{5}=\frac{32}{243}=.1317$
(b). Now $X \sim \operatorname{Binom}\left(8, \frac{2}{3}\right)$

$$
\begin{aligned}
P(X \geq 5) & =\sum_{k=5}^{8}\binom{8}{k}\left(\frac{2}{3}\right)^{k}\left(\frac{1}{3}\right)^{8-k} \\
& =.7414
\end{aligned}
$$

(c). We are asked for the probability that the 6th potential interviewee will be the 5th to consent.

$$
\begin{aligned}
P(X=6) & =\binom{5}{4}\left(\frac{2}{3}\right)^{5} \frac{1}{3} \\
& =\frac{160}{729}=.2195
\end{aligned}
$$

(d).

$$
\begin{aligned}
P(X=7) & =\binom{6}{4}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{2} \\
& =\frac{160}{729}=.2195
\end{aligned}
$$

Q7

As the expected value of a function of a discrete random variable X equals $\sum_{i} f\left(x_{i}\right) P\left\{X=x_{i}\right\}, c^{X}$ has as an expected value of

$$
\begin{gathered}
E\left[c^{X}\right]=c^{1} P\{X=1\}+c^{-1} P\{X=-1\} \\
E\left[c^{X}\right]=c(p)+\left(\frac{1}{c}\right)(1-p) \\
E\left[c^{X}\right]=c p+\frac{1-p}{c}
\end{gathered}
$$

Setting this equal to 1 ,

$$
\begin{gathered}
c p+\frac{1-p}{c}=1 \\
p c^{2}+1-p=c \\
p c^{2}-c+1-p=0
\end{gathered}
$$

If $p=0$, then $c=1$ (disregarded). If $p \neq 0$, we solve this quadratic equation and get

$$
\begin{gathered}
c=\frac{1 \pm \sqrt{(-1)^{2}-4 p(1-p)}}{2 p} \\
c=\frac{1 \pm \sqrt{(2 p-1)^{2}}}{2 p} \\
c=\frac{1 \pm(2 p-1)}{2 p}
\end{gathered}
$$

Solving the equation above, we get $c=\frac{1}{p}-1$ or $c=1$ (disregarded).

Q8

$$
\begin{aligned}
E\left(\frac{1}{X+1}\right) & =\sum_{k=0}^{n} \frac{1}{k+1} P(X=k) \\
& =\sum_{k=0}^{n} \frac{1}{k+1} \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \\
& =\frac{1}{(n+1) p} \sum_{k=0}^{n} \frac{(n+1)!}{(k+1)!(n-k)!} p^{k+1}(1-p)^{n-k} \\
& =\frac{1}{(n+1) p}\left(\sum_{i=0}^{n+1} \frac{(n+1)!}{i!(n+1-i)!} p^{i}(1-p)^{n+1-i}-(1-p)^{n+1}\right) \\
& =\frac{1}{(n+1) p}\left((p+(1-p))^{n+1}-(1-p)^{n+1}\right) \\
& =\frac{1-(1-p)^{n+1}}{(n+1) p}
\end{aligned}
$$

Q9

Note that a Poisson r.v. has the parameter $\lambda>0$ and $P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$ for $k=0,1,2, \ldots$ Fix a $k \in\{0,1,2, \ldots\}$ and let $f_{k}(\lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}$. If $k=0$, note that $f_{0}(\lambda)=e^{-\lambda}, \lambda>0$, so no maximum is attained for $k=0$. If $k>0$, then

$$
\begin{aligned}
f_{k}^{\prime}(\lambda)= & \frac{e^{-\lambda}}{k!}\left(k \lambda^{k-1}-\lambda^{k}\right) \\
& \begin{cases}>0 & \text { if } \lambda<k \\
=0 & \text { if } \lambda=k \\
<0 & \text { if } \lambda<k\end{cases}
\end{aligned}
$$

Hence $\lambda=k$ maximizes $P(X=k)$.

Q10

First, according to the expectation of a function of random variables, we have

$$
\begin{aligned}
E\left(X^{n}\right) & =\sum_{k=1}^{\infty} k^{n} \frac{\lambda^{k} e^{-\lambda}}{k!} \\
& =\lambda \sum_{k=1}^{\infty} k^{n-1} \frac{\lambda^{k-1} e^{-\lambda}}{(k-1)!} \\
& =\lambda \sum_{i=0}^{\infty}(i+1)^{n-1} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda E\left((X+1)^{n-1}\right) .
\end{aligned}
$$

We have known $E(X)=\lambda$. Then by the formula proved above,

$$
\begin{aligned}
E\left(X^{2}\right) & =\lambda E(X+1)=\lambda(E(X)+1)=\lambda^{2}+\lambda \\
E\left(X^{3}\right) & =\lambda E\left((X+1)^{2}\right) \\
& =\lambda\left(E\left(X^{2}+2 X+1\right)\right) \\
& =\lambda\left(E\left(X^{2}\right)+2 E(X)+1\right) \\
& =\lambda\left(\lambda^{2}+\lambda+2 \lambda+1\right) \\
& =\lambda^{3}+3 \lambda^{2}+\lambda .
\end{aligned}
$$

